Skylake Intel's 6th-gen CPU

Intel’s Core i7-6700K and i5-6600K , code-named “Skylake,” is finally here...expecting Skylake to be “40 percent faster” than its predecessor in all things.

Skylake is indeed faster than Haswell, but despite the “tock” label, it’s still just an evolutionary step forward. Skylake isn’t just about the CPU, though—it’s an entire platform, and that’s where this 6th-gen part moves us forward.

First you need to know what Skylake is. Intel’s 6th-generation CPU, Skylake brings DDR4 memory to the mainstream as well as improved overclocking features, better integrated graphics performance, and a new chipset.



Leaked details of Intel’s entire desktop line, but those are still unofficial and, frankly, pretty wrong so far. On Wednesday in Cologne, Germany, at Gamescom,  the world’s largest game convention, Intel officially unwrapped only two Skylake desktop CPUs. Both are aimed squarely at gamers and PC enthusiasts.



Launch Day for Skylake-K: August 5th

The launch of the first two CPUs from Intel’s Skylake architecture, the 6th Generation Core i7-6700K and the Core i5-6600K. With the new processors we get a new architecture, a new socket, the move to DDR4 and the potential to increase both performance and efficiency at the same time. 

A full launch for the Skylake-K processors, with the two CPUs being launched alongside new Z170 series motherboards and dual channel DDR4 memory kits. Having spoken to a few retailers, they have stock ready to go today. That being said, a number of them would have liked more stock on launch day, suggesting that they expect the processors to sell out rather quickly when the buy buttons are activated.




All the motherboard manufacturers should be ready to go as well – take a look at our breakdown of the retail motherboard information we could get before launch for a good overview of what to expect this generation. DDR4 manufacturers have been selling the new standard of memory for over a year due to Intel’s high-end X99 platform supporting it, but today will see the introduction of dual channel kits to go with the Skylake platform as well as a number of higher speed modules ready and waiting.




From left to right we have a 2nd gen Core i7-2700K, a 4th Core i7-4790K, the 6th gen Skylake and the gigantic Haswell-E Core i7-5960X chip.
 

‘Where are the non-K processors?!’ you may ask. Intel tells us that these will be released later in the year, sometime in Q3. 



Intel’s 6th gen Skylake CPU will require a new LGA1151 socket that is incompatible with Haswell’s LGA1150.


----The most in-your-face change is the new socket that’s incompatible with today’s CPUs. That means you won’t drop a Skylake CPU into your Haswell motherboard, and you won’t be dropping your Haswell processor into a Skylake mobo.

As with previous nomenclature, the i7 model will be quad core CPU with HyperThreading and 8MB of L3 cache. This matches up with the Haswell parts to which Skylake is more closely aligned (Desktop Broadwell is rather a blip, using an external on-package eDRAM and you can read our review here), in a large number of aspects including the other cache levels. The 6700K runs at a base frequency of 4.0 GHz and an all-core frequency of 4.2 GHz. This is a slight speed bump over the 4770K which was launched at the start of Haswell, but a minor reduction in clockspeeds compared to the i7-4790K, which was an upgraded Haswell part launched later under the name of ‘Devil’s Canyon’.



The integrated graphics nomenclature has changed, with the new i7-6700K having the Intel HD 530 graphics, compared to the HD4600 in the Haswell parts. We know that the HD 530, like the HD 4600, has 24 of Intel’s execution units in the iGPU, and they run at a peak frequency of 1150 MHz. The introduction of the HD 530 marks the launch of Intel’s 9th generation graphics, and we'll cover Gen9 in a bit more detail later.



The i5 model for Skylake also has quad cores, but without HyperThreading and only 6MB of L3 cache. Like the i7, it also has the Intel HD 530 graphics but operates at a lower frequency band.



Both the Skylake processors will support DDR4 and DDR3L memory in order to ease the transition to DDR4 for the mainstream segment, although it should be said that DDR3L is implemented here due to its lower than standard DDR3 operating voltage of 1.35 volts. This more closely aligns with DDR4’s standard voltage of 1.20 volts or the high end DDR4 kits at 1.35 volts, and as a result we are told that motherboards that support DDR3L will typically only be qualified to run DDR3L kits, rather than DDR3 kits.



This leads onto the point that both of the K processors for Skylake sit at 91W, which is a small increase over Haswell at 84W and Devil’s Canyon at 88W. In the past Intel has historically run a 1:1 policy whereby a 1% performance gain must come at a maximum of a 1% power penalty – this was adjust to 2:1 for Broadwell, and we should assume that Skylake had similar requirements during the planning stage. Depending on the specific architecture details, one potential source for this increase in power consumption may be the dual memory controller design, although Skylake has a significant number of features to differentiate itself from Haswell.




How much RAM

Before you start groaning that Intel is playing the forced-obsolescence card, you should remember that Skylake introduces DDR4 to the mainstream. While it might feasible to design a motherboard that will work with both, making a cleaner break is usually the better choice to reduce confusion. Skylake does actually support DDR3L RAM, but that’s for servers and laptops. The DDR3 in most people’s desktop systems won’t work with it. You just need to come to grips with that: If you decide to build a new Skylake desktop, you will need to buy new RAM, too.

The good news is the price of DDR4 isn’t the deal-breaker it was when first introduced with Intel’s Haswell-E CPUs last year. Today, you can get 8GB of DDR3/1333 for $40, while 8GB of DDR4/2133 costs $50.

You will need two of those modules for dual-channel support, because Skylake, like the last few consumer-grade chips, needs two modules to operate at its maximum bandwidth.

For those who always felt the 32GB of maximum RAM in the mainstream Haswell-based desktops was a limitation, Skylake’s use of DDR4 means you can get 64GB of RAM into your rig without having to step up to a pricier Haswell-E system.







The owner of blogmytut.blogspot.com will not be liable for any errors or omissions in this information nor for the availability of this information. The owner will not be liable for any losses, injuries, or damages from the display or use of this information.Report any Broken Download link on Blogmytuts Facebook Page
Share on Google Plus

About Chucks

A Freelance Computer Tech with knowledge about computer, router and mobile phones, especially in Upgrade and Downgrade OS, Software and Hardware troubleshooting. fallow me at Google+
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment